以結合R統計軟體之FCM分群法改善庫存管理─以L公司為例

Improving Inventory Control Based on Fuzzy C-means Clustering with R Statistical Software: A Case Study of L company

黃雅琳、許碧敏
Y. L. Huang and B. M. Hsu

正修科技大學 工業工程與管理系


摘要

在激烈的市場競爭中,企業通常要滿足客戶的需求,同時也要增加利潤。 然而,庫存變動緩慢的問題成為管理人員潛在的問題,也是設定安全庫存數量的難題。 為企業選擇最合適的庫存管理方法非常重要。 本文整合了聚類方法和ABC分析來確定庫存量。 通過與傳統的ABC分析相比較,分析L公司的實際銷售數據,並結合模糊C-均值群集分析法 (Fuzzy C-means Clustering, FCM) 與R統計軟體應用於改善庫存管理,以發現最合適的庫存管理方式。該研究成果可為決策者改善庫存管理提供參考。 此外,研究結果有助於提高客戶滿意度並降低庫存成本。

關鍵字:庫存管理、模糊C-均值群集分析法(Fuzzy C-means Clustering)。

ABSTRACT

In the situation of the intense marketing competition, Companies usually want to satisfy customer’s requirements and also increase the profit at the same time. However, the problems of slow-moving inventory became an underlying concern to managers and the dilemma for setting the quantity of safety stock. it is important to choose the most suitable method of the inventory management for companies. This paper integrates Clustering methods and ABC analysis to determine the stock amount. The actual sales data of an L company is analyzed by comparing with traditional ABC analysis and integrates with Fuzzy C-means Clustering, (FCM) with R Statistical Software applied to inventory control to discover the most appropriate way for stock management. The research result can be a reference for decision makers to improve inventory management. Furthermore, the research findings can be helpful to increase customer satisfaction and decrease stock cost.

Keywords: Inventory Control; Fuzzy C-means Clustering